Vogelhirne weisen eine überraschende Organisation auf

(28.09.2020) Manche Vögel können erstaunliche kognitive Leistungen vollbringen – dabei erscheint ihr Gehirn im Vergleich mit dem von Säugetieren ziemlich unorganisiert.

Die Arbeiten eines Forschungsteams der Ruhr-Universität Bochum (RUB) sowie aus Düsseldorf, Jülich und Aachen offenbaren erstmals verblüffende Ähnlichkeiten zwischen dem Neocortex der Säugetiere und sensorischen Hirnarealen von Vögeln: Beide sind in horizontalen Schichten und vertikalen Säulen vernetzt.

Ruhr-Universität Bochum

Damit sind 150 Jahre alte Annahmen widerlegt. Das Team hat seine Ergebnisse in der Zeitschrift „Science“ vom 25. September 2020 veröffentlicht.

Die größten Gehirne

Vögel und Säugetiere haben gemessen an ihrer Körpergröße die größten Gehirne. Ansonsten hätten sie allerdings wenig gemeinsam, so die Überzeugung der Wissenschaft seit dem 19. Jahrhundert: Säugetiergehirne verfügen über einen Neocortex: eine Hirnrinde, die aus sechs Schichten aufgebaut und senkrecht zu diesen Schichten in Kolumnen hochgradig geordnet ist. Vogelgehirne hingegen sehen aus wie Klumpen aus grauen Zellen.

„Angesichts der erstaunlichen kognitiven Leistungen, die Vögel vollbringen können, lag der Verdacht allerdings nahe, dass ihr Gehirn organisierter aufgebaut ist als gedacht“, so Prof. Dr. Onur Güntürkün, Leiter der Arbeitseinheit Biopsychologie an der Fakultät für Psychologie der RUB.

n mehreren Experimenten gelang ihm mit seinen ehemaligen Doktoranden Dr. Martin Stacho und Dr. Christina Herold der Nachweis.

Im ersten Schritt kam eine neue, durch die Düsseldorfer und Jülicher Teams perfektionierte Methode zum Einsatz: Das sogenannte 3D polarized light imaging, kurz 3D-PLI, ist in der Lage, einzelne Nervenfasern, in denen Signale weitergeleitet werden, und deren Ausrichtung darzustellen.

Die Untersuchung der Gehirne verschiedener Vögel ergab eine für die Forscher überraschende Organisation, die der im Säugetiergehirn ähnlich ist: Auch hier verlaufen die Fasern horizontal und vertikal genauso wie im Neocortex.

Weitere Experimente erlaubten es mittels winziger Kristalle, welche Nervenzellen in Hirnschnitten aufnehmen und in ihre kleinsten Verästelungen transportieren, die Vernetzung der Zellen im Vogelhirn genau zu untersuchen.

„Auch hierbei zeigte sich der Aufbau in Säulen, in denen Signale von oben nach unten und umgekehrt weitergeleitet werden, und horizontale lange Fasern“, erklärt Onur Güntürkün. Dieser Aufbau ist allerdings nur in den sensorischen Bereichen des Vogelgehirns vorzufinden. Andere Bereiche, wie etwa assoziative Areale, sind anders organisiert.

Erstaunliche kognitive Leistungen

Einige Vögel sind zu erstaunlichen kognitiven Leistungen in der Lage, die man eigentlich nur höher entwickelten Säugetieren wie Primaten zugetraut hätte. So erkennen sich Raben selbst im Spiegel und planen in die Zukunft. Ebenso können sie sich in andere hineinversetzen, Kausalitäten erkennen und Schlussfolgerungen ziehen.

Publikation

Martin Stacho, Christina Herold, Noemi Rook, Hermann Wagner, Markus Axer, Katrin Amunts, Onur Güntürkün: A cortex-like canonical circuit in the avian forebrain, in: Science 2020, DOI: 10.1126/science.abc5534


Weitere Meldungen

Ein Schnitt durch den Haiwirbel zeigt Wachstumsringe, ähnlich denen in Baumstämmen.; Bildquelle: Daniel Erny/Universitätsklinikum Freiburg

Gehirn des weltweit ältesten Wirbeltieres untersucht

Detaillierte Untersuchungen des ältesten Gehirns können neue Erkenntnisse für altersbedingte Krankheiten des Gehirns ermöglichen. Studie im Fachmagazin Acta Neuropathologica erschienen
Weiterlesen

Verschiedene Nervensignale im Stirnlappen der Brillenblattnasen-Fledermaus Carollia perspicillata (links) gehen Kommunikationslauten (oben) und Lauten zur Echo-Ortung (unten) voran.; Bildquelle: Julio C. Hechavarria, Goethe Universität Frankfurt

Rhythmische Nervensignale bestimmen Laute von Fledermäusen

Ein bestimmter neuronaler Schaltkreis im Gehirn kontrolliert bei Fledermäusen die Lautäußerungen der Tiere. Dies haben jetzt Biologen der Goethe-Universität Frankfurt herausgefunden
Weiterlesen

Menschenaffen wie diese Bonobos haben wie die Menschen grosse Hirne und können daher sehr geschickte Fingerfertigkeiten erlernen.; Bildquelle: Sandra Heldstab/Zoologisch-Botanischer Garten Wilhelma, Stuttgart

Affenarten mit grossen Gehirnen beherrschen schwierigere Handgriffe als solche mit kleinen Hirnen

Doch das Erlernen feinmotorischer Fähigkeiten wie der Werkzeuggebrauch kann dauern: am meisten Zeit beansprucht es bei Menschen
Weiterlesen

Mikroskopische Aufnahme eines Hirnhälften-Schnitts eines 101 Tage alten ARHGAP11B-transgenen Weißbüschelaffen-Fötus. Die Zellkerne sind weiß dargestellt. Pfeile zeigen einen Sulcus und einen Gyrus an.; Bildquelle: Max-Planck-Institut für molekulare Zellbiologie und Genetik (MPI-CBG)

Menschliches Gehirngrößen-Gen vergrößert auch Gehirn von Affen

Dresdner und japanische Forscher zeigen, dass ein menschenspezifisches Gen einen größeren Neokortex beim Weißbüschelaffen hervorruft
Weiterlesen

Prof. Dr. Peter Hier; Bildquelle: Ingo Rappers / HIH

Affen reagieren auf Animationen im Hollywood-Stil

Rhesusaffen akzeptieren einen naturalistisch aussehenden Affen-Avatar als Artgenossen und begegnen ihm mit ihrer artspezifischen Mimik. Unrealistische Avatare ignorieren sie dagegen
Weiterlesen

Max-Planck-Institut für Kognitions- und Neurowissenschaften

Affen kommunizieren, Menschen haben Sprache

Obwohl die Tiere hochkomplexe Fähigkeiten haben, Sprache können sie nicht. Welche Hirnstrukturen und Gene beim Menschen den Unterschied machen, will Angela D. Friederici vom MPI CBS herausfinden
Weiterlesen

Alexander Hecker M.Sc. und Prof. Dr. Stefan Schuster, Lehrstuhl für Tierphysiologie an der Universität Bayreuth.; Bildquelle: Christian Wißler

Bayreuther Biologen ergründen die Rolle der Mauthnerzellen in tierischen Gehirnen

Die Gehirne der meisten Fisch- und Amphibienarten enthalten ein Paar auffällig großer Nervenzellen. Es sind die größten Zellen, die in tierischen Gehirnen vorkommen
Weiterlesen

(links) 3D-Montage eines Mäusegehirns: repräsentative Schnitte sind aus einer lückenlosen Serie so angeordnet, dass auf der linken Hemisphäre ein Referenzbild aus einem Hirnatlas und auf der rechten Hemisphäre der genau dazu passe; Bildquelle: Georg Hafner

Tollwut- und Schnupfenviren helfen Neurowissenschaften

Ein „entschärftes“ Tollwutvirus hilft Göttinger Forschenden des Sonderforschungsbereichs 889 „Zelluläre Mechanismen sensorischer Verarbeitung“: gehirnweite Vernetzung von molekular definierten Nervenzellen wird sichtbar
Weiterlesen


Wissenschaft


Universitäten


Neuerscheinungen

09.10.