Zellskelett-Gene regulieren Vernetzung im Säugerhirn

(10.05.2024) Ein Molekülpaar zu trennen, hat Auswirkungen auf das Networking im Hirn: So lässt sich zusammenfassen, was eine Marburger Forschungsgruppe jetzt über die Vernetzung von Nervenzellen herausgefunden hat.


Das Bild zeigt die beiden hauptverantwortlichen Autoren der Studie (von rechts): Dr. Sharof Khudayberdiev und Professor Dr. Marco Rust.

Diese hängt demnach davon ab, wie die Proteine CAP1, SRF und dessen Bindungspartner MRTF miteinander interagieren. Wie genau der Steuerungsprozess vor sich geht, berichtet das Team in der Fachzeitschrift „Science Signaling“.

Um Netzwerke im Hirn zu knüpfen, ist der Umbau von Nervenzellen nötig; er umfasst insbesondere Änderungen des Zellskeletts. Die Vernetzung ist abhängig vom Genregulator SRF, der durch das Protein MRTF aktiviert wird. Treten diese beiden Moleküle im Zellkern als Paar auf, aktivieren sie nachgeschaltete Gene, die das Zellskelett kontrollieren.

 „Frühere Arbeiten haben die große Bedeutung des Transkriptionsfaktors SRF und seines Helfers MRTF im Gehirn aufgezeigt“, erläutert der Neurobiologe Professor Dr. Marco Rust von der Philipps-Universität Marburg, der die Forschungsarbeit leitete. „Was das Zusammenspiel von MRTF und SRF in Nervenzellen steuert, war bislang jedoch weitgehend unverstanden.“

Ein wichtiger Bestandteil des Zellskeletts, der zur Vernetzung von Nervenzellen beiträgt, sind Ketten aus dem Gerüstmolekül Aktin. „Die Bildung langer Fäden aus Aktin wird durch Regulatoren gesteuert, ebenso der Abbau“, legt Rusts Mitarbeiter Dr. Sharof Khudayberdiev dar, einer der Leitautoren des Fachaufsatzes. Zu den Steuermolekülen gehört das Protein CAP1. 

„Experimente an Versuchstieren haben gezeigt, dass sich das wachsende Gehirn nicht normal entwickelt, wenn CAP1 fehlt“, erklärt Khudayberdiev. „Ohne das Protein werden Nervenbahnen während der embryonalen Hirnentwicklung nicht gebildet.“

Die Arbeitsgruppe nutzte molekulargenetische und pharmakologische Verfahren, um das Zusammenspiel von SRF und MRTF mit CAP1 in isolierten Nervenzellen aufzuklären. 

„Wir konnten zeigen, dass CAP1 das Zusammenspiel von MRTF und SRF in Nervenzellen unterbindet“, berichtet Rust. Das Team konnte auch den zugrunde liegenden molekularen Mechanismus klären: Den Befunden zufolge hemmt CAP1 die Aktivität von SRF, indem es dessen Partner MRFT außerhalb des Zellkerns zurückhält. Ohne die Kopplung an MRTF kann SRF nicht dafür sorgen, dass nachgeschaltete Gene korrekt arbeiten, die zur Verknüpfung von Nervenzellen beitragen.

Welche Bedeutung CAP1 zukommt, zeigt ein weiteres Experiment des Teams: Enthalten die Zellen ein mutiertes CAP1-Gen, so entsteht ein funktionsunfähiges Genprodukt; weil CAP1 dann MRTF nicht zurückhalten kann, gelangt mehr davon in den Zellkern – die Aktivität von SRF steigt.

„Störungen der MRTF-SRF-Funktion sind mit der Alzheimer-Erkrankung, Autismus und Schizophrenie in Verbindung gebracht worden“, ergänzt Rust. „Neue Erkenntnisse über die Regulation von MRTF-SRF sind die Voraussetzung, um neuartige Therapieansätze zu entwickeln, die nicht bloß die Symptome bekämpfen, sondern die molekularen Ursachen solcher Krankheiten.“

Professor Dr. Marco Rust leitet die Arbeitsgruppe Molekulare Neurobiologie am Institut für Physiologische Chemie des Marburger Fachbereichs Medizin. Er gehört dem neurowissenschaftlichen Forschungszentrum Center for Mind Brain and Behavior (CMBB) an.

Neben Rusts Arbeitsgruppe beteiligte sich die Abteilung Massenspektrometrie und Elementanalytik des Marburger Fachbereichs Chemie unter ihrem Leiter Dr. Uwe Linne an der wissenschaftlichen Arbeit, die der Veröffentlichung zugrunde liegt. Die Deutsche Forschungsgemeinschaft und die italienische Stiftung Fondazione Cariplo unterstützten die Forschungsarbeiten finanziell.

Publikation

Sharof Khudayberdiev & al.: The actin-binding protein CAP1 represses MRTF-SRF–dependent gene expression in the mouse cerebral cortex, Science Signaling 2024,



Weitere Meldungen

Nervenfaserstrukturen des Schimpansengehirns; Bildquelle: MPI CBS

Chimpanzee Brain Connectivity Atlas online

Die Frage, wie sich das menschliche Gehirn im Laufe der Evolution entwickelt hat, kann womöglich nur durch Vergleiche mit unseren nächsten lebenden Verwandten, den Schimpansen, beantwortet werden
Weiterlesen

Rhesusaffen (Macaca mulatta) in der Tierhaltung am Deutschen Primatenzentrum.; Bildquelle: Margrit Hampe

Wie wird das Ziel einer Armbewegung im Primatengehirn räumlich kodiert

Kenntnisse über räumliche Bezugssysteme sind notwendig für die Steuerung von Neuroprothesen
Weiterlesen

Weißbüschelaffen am Deutschen Primatenzentrum; Bildquelle: Manfred Eberle/DPZ

Eine gentechnisch unterstützte Reise ins Primatengehirn

Die Leibniz-Gemeinschaft fördert das Projekt PRIMADIS mit einer Million Euro
Weiterlesen

Elektronenmikroskopische Darstellung einer erregenden Synapse und Schema des Proteinnetzwerks zur Verankerung der AMPA-Rezeptoren in der Zellmembran.; Bildquelle: Bernd Fakler/Universität Freiburg

Noelin-Proteine zentral für Lernfähigkeit von Säugetiergehirnen

Deutsch-amerikanisches Forschungsteam um Freiburger Physiologen zeigt die fundamentale Bedeutung der Noelin-Proteine für die Plastizität von Nervenzellen auf
Weiterlesen

Bienen; Bildquelle: Christian Verhoeven (www.verhoevenfoto.de)

Fluoreszierendes Protein bringt Licht ins Bienengehirn

Ein internationales Team von Bienenforschenden unter Beteiligung der Heinrich-Heine-Universität Düsseldorf (HHU) hat einen Calcium-Sensor in eine Biene integriert
Weiterlesen

Tauben träumen im Schlaf; Bildquelle: RUB, Marquard

Hirnforschung: Träumen Tauben vom Fliegen?

Träumen galt lange Zeit als etwas, das den Schlaf des Menschen auszeichnet. Neue Erkenntnisse deuten jedoch darauf hin, dass Tauben im Schlaf möglicherweise Flugszenen erleben
Weiterlesen

Dr. Michael Heide; Bildquelle: Sascha Bubner/Deutsches Primatenzentrum GmbH

Das Gen, dem wir unser großes Gehirn verdanken

Hirnorganoide liefern Einblicke in die Evolution des menschlichen Gehirns
Weiterlesen

Ruhr-Universität Bochum

Schlaue Vögel denken smart und sparsam

Die Gehirnzellen von Vögeln benötigen nur etwa ein Drittel der Energie, die Säugetiere aufwenden müssen, um ihr Gehirn zu versorgen
Weiterlesen


Kurzmeldungen


Universitäten


Neuerscheinungen