Infektionen verhindern, Heilungsprozesse fördern: Biomaterialien aus Spinnenseide

(28.08.2020) Neue, an der Universität Bayreuth entwickelte Biomaterialien beseitigen Infektionsrisiken und fördern Heilungsprozesse: Einem Forschungsteam unter Leitung von Prof. Dr. Thomas Scheibel ist es gelungen, diese für die Biomedizin hochrelevanten Materialeigenschaften zu kombinieren.

Die nanostrukturierten Materialien basieren auf Spinnenseide. Sie verhindern die Ansiedlung von Bakterien und Pilzen, aber unterstützen gleichzeitig proaktiv die Regeneration von menschlichem Gewebe. Daher eignen sie sich hervorragend für Implantate, Wundverbände, Prothesen, Kontaktlinsen und andere Hilfsmittel des Alltags.

In der Zeitschrift „Materials Today“ stellen die Wissenschaftler ihre Innovation vor.


Prof. Dr.-Ing. Gregor Lang bei der rasterelektronenmikroskopischen Betrachtung der Materialoberflächen.

Es ist ein weithin unterschätztes Infektionsrisiko: Mikroben setzen sich auf den Oberflächen von Gegenständen fest, die für medizinische Therapien oder für die Lebensqualität im Alltag unentbehrlich sind. Allmählich bilden sie einen dichten, oftmals unsichtbaren Biofilm, der sich auch durch Reinigungsmittel nicht ohne Weiteres entfernen lässt und meist sogar resistent gegen Antibiotika und Antimykotika ist.

So können Bakterien und Pilze leicht in das angrenzende Gewebe des Organismus eindringen. Dann stören sie nicht nur Heilungsprozesse, sondern können sogar lebensgefährliche Infektionen hervorrufen.

Mit einem neuartigen Forschungsansatz haben Wissenschaftler der Universität Bayreuth jetzt eine Lösung für dieses Problem gefunden. Aus biotechnologisch hergestellten Proteinen der Spinnenseide haben sie ein Material entwickelt, das krankheitserregende Mikroben darin hindert, sich an den Oberflächen anzulagern.

Sogar multiresistente Streptokokken (MRSA) haben keine Chance, sich auf der Oberfläche des Materials einzunisten. Biofilme auf medizinischen Instrumenten, Sportgeräten, Kontaktlinsen, Prothesen und weiteren Alltagsgegenständen gehören dadurch der Vergangenheit an.

Gleichzeitig aber sind die Materialien so beschaffen, dass sie die Anhaftung und Vermehrung menschlicher Zellen auf ihren Oberflächen fördern. Werden sie beispielsweise für Wundabdeckungen, Hautersatz oder Implantate verwendet, unterstützen sie proaktiv die Regeneration von beschädigtem oder fehlendem Gewebe.

Im Unterschied zu anderen Materialien, die bislang zur Wiederherstellung von Gewebe eingesetzt werden, ist das Infektionsrisiko von vornherein gebannt. Mikrobiell-resistente Beschichtungen in einer Vielzahl biomedizinischer und technischer Anwendungen rücken damit in greifbare Nähe.

Die Bayreuther Forscher haben die mikrobenabweisende Funktion bisher an zwei Arten von Spinnenseidenmaterialien erfolgreich getestet: an Folien und Beschichtungen, die nur wenige Nanometer dick sind, und an Hydrogelen mit der Struktur eines dreidimensionalen Netzwerks.

Dieses kann als Gerüst für neu wachsendes Gewebe verwendet werden. „Unsere bisherigen Untersuchungen haben zu einer Erkenntnis geführt, die für künftige Forschungsarbeiten wegweisend ist: Die mikrobenabweisenden Eigenschaften der von uns entwickelten Biomaterialien basieren nicht auf toxischen, also nicht auf zelltötenden Wirkungen.

Entscheidend sind vielmehr Strukturen im Nanometerbereich, welche die Spinnenseidenoberflächen mikrobenabweisend machen. Krankheitserregern ist es dadurch unmöglich, sich auf diesen Oberflächen festzusetzen“, erklärt Prof. Dr. Thomas Scheibel, der an der Universität Bayreuth den Lehrstuhl für Biomaterialien innehat.

„Faszinierend an diesen Forschungsergebnissen ist auch, dass sich die Natur wieder einmal als ideales Vorbild für extrem anspruchsvolle Materialkonzepte erwiesen hat.

Natürliche Spinnenseide ist hochgradig resistent gegen den mikrobiellen Befall, und die Reproduktion dieser Eigenschaften auf biotechnologischem Weg sehe ich als bahnbrechend“, sagt Prof. Dr.-Ing. Gregor Lang, einer der beiden Erstautoren und Leiter der Forschungsgruppe Biopolymerverarbeitung an der Universität Bayreuth.

In den Bayreuther Laboratorien wurden Spinnenseidenproteine gezielt mit unterschiedlichen Nanostrukturen ausgestattet, um die biomedizinisch relevanten Eigenschaften anwendungsbezogen zu optimieren. Dabei bewährten sich erneut die vernetzten Forschungsstrukturen auf dem Bayreuther Campus.

Zusammen mit dem Bayerischen Polymerinstitut (BPI) waren drei weitere interdisziplinäre Forschungseinrichtungen der Universität Bayreuth an diesem Forschungserfolg beteiligt: das Bayreuther Materialzentrum (BayMAT), das Bayreuther Zentrum für Kolloide und Grenzflächen (BZKG) sowie das Bayreuther Zentrum für Molekulare Biowissenschaften (BZKG).

Forschungskooperation

Bei der jetzt in „Materials Today“ veröffentlichten Studie hat das Team der Universität Bayreuth mit Forschungspartnern an der Universität des Saarlandes und der Justus-Liebig-Universität Gießen zusammengearbeitet.

Forschungsförderung

Die Forschungsarbeiten an der Universität Bayreuth wurden von der Deutschen Forschungsgemeinschaft (DFG) im Rahmen des TRR 225 („Von den Grundlagen der Biofabrikation zu funktionalen Gewebemodellen“) und des SFB 840 („Von partikulären Nanosystemen zur Mesotechnologie“) gefördert.

Publikation

Sushma Kumari, Gregor Lang, Elise DeSimone, Christian Spengler, Vanessa Trossmann, Susanne Lücker, Martina Hudel, Karin Jacobs, Norbert Krämer, Thomas Scheibel: Engineered spider silk-based 2D and 3D materials prevent microbial infestation. Materials Today (2020)


Weitere Meldungen

Spinnenart Ocrepeira klamt; Bildquelle: Charlotte Hopfe.

Forscherin der Universität Bayreuth entdeckt neue Spinnenart

Im Hochland von Kolumbien hat Charlotte Hopfe während eines Forschungsaufenthalts im Rahmen ihrer Promotion zum Thema „Spinnenseide“ eine neue Spinnenart entdeckt und zoologisch beschrieben
Weiterlesen

Die Seidenspinne Nephila senegalensis im Aquazoo Löbbecke Museum Düsseldorf auf der Hand von Anna Bartz vom Universitätsklinikum Bonn.; Bildquelle: Philipp Schroeder/Aquazoo Löbbecke Museum Düsseldorf

Spinnenseide zur Heilung von Knochen und Knorpel

Zur Therapie von umfangreicheren Knochenbrüchen, Osteoporose und Tumoren suchen Ärzte Ersatzmaterial. Anna Bartz, Doktorandin in der Orthopädie und Unfallchirurgie des Universitätsklinikums Bonn, verfolgt einen innovativen Ansatz
Weiterlesen

Spinnennetz, überlagert mit der Strukturoberfläche der Domänen eines Spinnenseidenproteins. Die Methionin-Seitenketten sind als farbige Stäbchen hervorgehoben.; Bildquelle: pixabay.com / Collage: Hannes Neuweiler

Spinnenseide: Ein verformbares Protein liefert Verstärkung

Wissenschaftler der Universität Würzburg haben herausgefunden, dass Spinnenseide ein außergewöhnliches Protein enthält
Weiterlesen

Universität Greifswald

Australische Spinnenart produziert extrem elastische Fangnetze

Fangnetze zu bauen. Ein Wissenschaftler der Universität Greifswald hat zusammen mit Forschenden aus den USA, Taiwan und Argentinien den Aufbau und die Eigenschaften der Spinnfäden einer australischen Spinnenart genauer untersucht
Weiterlesen

Abbildung eines Spidroins, bestehend aus einer verknüpften C-terminalen Domäne (cyan), der entfalteten mittleren Domäne (weiße Linie) und den N-terminalen Domänen (grün), neben dem Schema; Bildquelle: Hannes Neuweiler

Molekulare Einblicke in Spinnenseide

Spinnenseide ist eine der stärksten Fasern der Natur und verfügt über etliche verblüffende Eigenschaften. Wissenschaftler der Universität Würzburg haben jetzt neue Details ihres Aufbaus entschlüsselt
Weiterlesen

Zart und zäh zugleich: Spinnenseide. Raffinierte Hierarchie und Ordnung auf verschiedensten Längenskalen; Bildquelle: Markus Anton und Periklis Papadopoulos/Universität Leipzig und Max-Planck-Institut für Polymerforschung Mainz

Zart und dennoch robust: Neue Erkenntnisse über Spinnenseide gewonnen

Physiker der Universität Leipzig haben gemeinsam mit ausländischen Partnern bei Experimenten mit Laserstrahlen völlig neue Erkenntnisse über die Beschaffenheit von Spinnenseide gewonnen
Weiterlesen

Julius-Maximilians-Universität Würzburg

Ultraschnelle Dynamik bei der Entstehung von Spinnenseide

Rein technisch funktioniert die Herstellung von Spinnenseide zwar schon ziemlich gut, aber die herausragenden mechanischen Eigenschaften des natürlichen Vorbilds werden damit bisher noch nicht erreicht
Weiterlesen

Eine Gartenkreuzspinne zieht mit den Beinen Spinnenfäden aus den Spinnwarzen an ihrem Hinterleib heraus. Spinnenfäden haben so spannende Eigenschaften, dass man sie gerne technisch nachbauen würde; Bildquelle: Manfred Schwedler

Neues über Spinnenseide

Spinnenfäden sind leicht, extrem reißfest und stark dehnbar. Das macht sie für industrielle Anwendungen interessant. Forscher vom Biozentrum der Uni Würzburg beschreiben in "Nature Communications" neue Details über die Proteine, aus denen Spinnenfäden bestehen
Weiterlesen


Wissenschaft


Universitäten


Neuerscheinungen