Zebrafische können ihr Herz flexibel reparieren

(06.02.2018) Dass Zebrafische ihr Herz nach Schäden regenerieren können, ist bereits bekannt. Nun zeigt eine Studie unter der Leitung der Universität Bern, dass Zebrafische ihr Herz nicht nach einem fixen Plan, sondern auf eine flexible Weise reparieren können.

Dabei bauen Zellen aus verschiedenen Schichten die Herzmuskeln wieder auf. Die gewonnenen Erkenntnisse könnten dazu dienen, einen ähnlichen Reparatur-Prozess auch im menschlichen Herzen anzustossen.


Schnitt durch ein Zebrafischherz mit zwei unterschiedlichen Muskelzellschichten (gelb und rot). Die regenerierenden Zellen des gelben Bereichs können auch zum Wiederaufbau der roten Schicht beitragen
Der Zebrafisch hat die erstaunliche Kapazität, sein Herz sogar nach schwerwiegenden Schäden wieder zu regenerieren. Dabei teilen sich Herzmuskelzellen, um das verlorene Gewebe zu ersetzen.

Da dieser Prozess im menschlichen Herz nicht vorhanden ist, sind Forschende auf der Suche nach den Mechanismen, die beim Zebrafisch dafür verantwortlich sind. Ob alle Herzmuskelzellen in gleichem Masse zur Reparatur des Zebrafischherzens beitragen und ob verschiedene Vorläuferzellen für verschiedene Herzsegmente vorhanden sind, ist derzeit unbekannt.

Ein Team um Dr. Nadia Mercader am Institut für Anatomie der Universität Bern konnte nun in enger Zusammenarbeit mit Mitarbeitern am Forschungsinstitut CNIC in Madrid (Spanien) und der Gruppe von Dr. Christian Mosimann an der Universität Zürich zeigen, dass Herzmuskelzellen des Zebrafisches höchst flexibel sind.

Die regenerierenden Herzmuskelzellen können sich im ausgewachsenen Herzen anpassen, um den Zellen in den verschiedenen Regionen der vormals defekten Herzwand zu ähneln.

Doch können im Zebrafisch Herzmuskelzellen aus allen Teilen des Herzens bei der Reparatur helfen? Um dies zu beantworten, schaute sich das Team auch die Frühentwicklung des Herzens an.

Zellen sind von Anfang an flexibel

Das Herz ist das erste Organ, das im entstehenden Embryo seine Funktion ausübt. Bei der Herzentwicklung bildet sich zuerst ein Herzschlauch, der sogleich anfängt, Blut zu pumpen, um den Organismus mit Sauerstoff zu versorgen. Gleichzeitig muss das Herz jedoch auch noch weiterwachsen.

wird ermöglicht durch den fortlaufenden Anbau von neuen Vorläuferzellen an den Enden des anfänglichen Herzschlauchs.

Während die Zellen des Herzschlauches im ausgewachsenen Herzen mehrheitlich die linke Herzkammer bilden, tragen die Zellen, die später hinzukommen, vor allem zur Bildung der rechten Herzkammer und der Vorhöfe bei.

Die Studie des Teams um Dr. Mercader zeigt nun, dass bereits bei der frühen Herzentwicklung ein hoher Grad an Plastizität vorhanden ist: wenn Muskelzellen des anfänglichen Herzschlauches zerstört werden, übernehmen die später hinzukommenden Zellen die ursprüngliche Funktion, trotz ihrer eigentlich anderen anfänglichen Aufgabenstellung.

«Diese Ergebnisse sind interessant, da unerwartet», sagt Nadia Mercader. «Sie lassen vermuten, dass ein Herz auf verschiedene Weisen wieder neu aufgebaut werden kann – wahrscheinlich nicht nach einem fixen Plan.»

Ein besseres Verständnis davon, was diese Flexibilität im Zebrafischherz ermöglicht, könnte laut den Forschenden von grosser Bedeutung sein, um denselben Reparatur-Prozess auch im menschlichen Herzen anzuregen.

Die Studie wurde im Fachjournal «Nature Communications» veröffentlicht.

Publikation

Sanchez-Iranzo, H., Galardi-Castilla, M., Minguillon, C., Sanz-Morejon, A., Gonzalez-Rosa, J.M., Felker, A., Ernst, A., Guzman-Martinez, G., Mosimann, C., Mercader, N., 30.01.2018: Tbx5a lineage tracing shows cardiomyocyte plasticity during zebrafish heart regeneration. Nat Commun 9:428, 1-13, doi: doi:10.1038/s41467-017-02650-6



Artikel kommentieren

Weitere Meldungen

Der Doktorand Chi-Chung Wu fischt im Labor von Prof. Gilbert Weidinger an der Uni Ulm nach Zebrafischen; Bildquelle: Heiko Grandel / Uni Ulm

Wenn verletzte Herzen der Zebrafische wieder wachsen

Die unter Biologen eigentlich als Zebrabärblinge bekannten Fische sind außerordentlich regenerationsfähig und können nicht nur verletzte Extremitäten nachwachsen lassen
Weiterlesen

Schwanzflosse eines Zebrabärblings. Li.: normale Regeneration der knöchernen Flossenstrahlen; re.: Fehlbildungen der Knochen infolge einer manipulierten Produktion des Signalproteins Sonic Hedgehog; Bildquelle: Professur für Entwicklungsbiologie, Universität Bayreuth.

Wie Zebrafische amputierte Flossen wiederherstellen

Im Gegensatz zum Menschen sind Fische imstande, amputierte Körperteile vollständig wiederherzustellen. Ein prominentes Beispiel ist der Zebrabärbling, der auch als Zebrafisch bezeichnet wird. Seine Schwanzflosse regeneriert nach einer Verletzung innerhalb von drei Wochen vollständig
Weiterlesen

Wenn eine Zebrafischlarve ein Beuteobjekt sieht, wird diese Information an Nervenzellen (blau) in der AF7-Hirnregion weitergeleitet.; Bildquelle: MPI f. Neurobiologie/ Semmelhack

Zebrafische jagen punktgenau: Beute wird bereits von den Zellen der Zebrafisch-Netzhaut erkannt

Sehen – erkennen – handeln. Diese drei Worte beschreiben, wie ein Sinneseindruck zu einer gezielten Bewegung führen kann. Wie und wo das Gehirn äußere Eindrücke in Verhaltensantworten umwandelt, ist jedoch größtenteils unbekannt
Weiterlesen

Neu entdeckte Nervenzell-Typen (gelb) helfen Zebrafischen ihre Augen- und Schwimmbewegungen zu koordinieren. In Blau das Gehirn einer Fischlarve, mit angedeuteter Lage der Augen.; Bildquelle: Max-Planck-Institut für Neurobiologie / Kubo

Warum Fische beim Schwimmen nicht abdriften

Neu entdeckte Nervenzell-Typen helfen Zebrafischen ihre Augen- und Schwimmbewegungen zu koordinieren
Weiterlesen

Tarnung bei Zebrafisch-Larven: Die linke Larve ist hellem Licht ausgesetzt und schwach pigmentiert, während die rechte vor einem dunklen Hintergrund stärker pigmentiert und damit getarnt ist.; Bildquelle: Stephan Neuhauss / UZH

Zebrafische nutzen Sonnenschutz auch zur Tarnung

Zebrafisch-Embryonen tarnen sich vor Fressfeinden, indem sie sich an den Untergrund anpassen. Neurobiologen der Universität Zürich haben nun herausgefunden, dass sich dieser Tarnmechanismus ursprünglich als Sonnenschutz entwickelt hat, um die Fische im Embryonalstadium vor kurzwelliger Sonnenstrahlung zu schützen, da diese das Erbgut in den Zellen schädigen kann
Weiterlesen

Der Zebrabärbling (Danio rerio) stammt ursprünglich aus Indien und dient seit den 70er Jahren als Modellorganismus für die biomedizinische Forschung; Bildquelle: Anna Ivanova / FLI

6 Jahre und 2 Monate: Methusalem-Zebrafisch gestorben

In der biomedizinischen Forschung werden Zebrafische seit den 1970er Jahren als Modellorganismen zur Analyse der zellulären und genetischen Grundlagen der Embryogenese eingesetzt. Die Fische vermehren sich gut und sind leicht zu halten
Weiterlesen

Zwei Zebrafische mit unterschiedlicher Färbung im Vergleich: Der obere trägt die Färbung zum Zeitraum des Ablaichens; Bildquelle: etmeduni Vienna/Zala

Zebrafische machen sich für den Partner schön

Was manche Aquarianer schon immer wussten, konnte eine Forschungsgruppe der Vetmeduni Vienna jetzt bestätigen. Geht es bei Zebrafischen für das Ablaichen zur Sache, ändern sie für kurze Zeit ihre Farbe: Die hellen und dunklen Streifen beider Geschlechter werden dann intensiver
Weiterlesen

Zebrafische ; Bildquelle: Vetmeduni Vienna/Zala

Wilde Zebrafische lernen das Einschätzen von Gefahren von zahmen Artgenossen

Einzelne Tiere lernen von ihren Artgenossen indirekt Informationen über Nahrung, Raubtiere und mögliche Fortpflanzungspartner. Dieses sogenannte soziale Lernen erspart ihnen, große Risiken dabei einzugehen, solche Informationen selbst herauszufinden
Weiterlesen


Wissenschaft


Universitäten


Neuerscheinungen