Blitzlichtfische in den Korallenriffen des Pazifiks

(10.02.2017) Der Blitzlichtfisch Anomalops katoptron, der in den Korallenriffen des Pazifiks lebt, nutzt Blinksignale zur nächtlichen Futtersuche.

Hat er es gefunden, geht das Blinken beim Fressen in ein Dauerleuchten über. Neben dem Umgebungslicht steuert also auch die Anwesenheit von Futter die Biolumineszenz der Fische.

Das haben Verhaltensbiologen um Prof. Dr. Stefan Herlitze und Dr. Jens Hellinger herausgefunden. So konnten sie ergründen, wozu die Fische ihre Biolumineszenz einsetzen.


Als eines der wenigen leuchtenden Meerestiere lässt sich der Blitzlichtfisch auch im Aquarium halten. Stefan Herlitze (links) und Jens Hellinger untersuchen sein Leuchten.

Für viele andere leuchtende Meerestiere ist diese Frage noch ungeklärt. Die Forscher berichten in der Ausgabe vom 8. Februar 2017 von Plos One.

Nach hinten drehbare Leuchtorgane

Blitzlichtfische, auch Laternenträger genannt, leben in Schwärmen von acht bis 50 Tieren, die nachts auf den Riffdächern der Korallen nach Plankton jagen. Tagsüber ziehen sich die Fische in Tiefen bis zu 400 Meter zurück und ruhen dort wahrscheinlich in Unterwasserhöhlen.

Sie besitzen unter ihren Augen nach hinten drehbare Leuchtorgane, in denen sie biolumineszente Bakterien als Symbionten beherbergen. Durch die Drehung der Leuchtorgane erzeugen die Fische Blinkmuster unterschiedlicher Frequenzen. Über die Funktion der Leuchtorgane gab es bisher nur Vermutungen.

„Mit verhaltensbiologischen Methoden ist es uns jetzt gelungen zu zeigen, dass Anomalops katoptron seine Leuchtorgane zur Futtersuche nutzt und seine Blinkfrequenz kontextabhängig anpasst“, erklären Stefan Herlitze und Jens Hellinger.

Für die Untersuchungen nutzen die Forscher wasserdichte Infrarotscheinwerfer, die sie eigens mit der Fakultätswerkstatt entwickelt hatten.

Konstantes Leuchten beim Fressen

Ihre Beobachtungen zeigen, dass die Fische während der Nacht im Mittel 90-mal pro Minute blinken. Setzten die Forscher dem Wasser Zooplankton zu, senkten die Tiere schlagartig ihre Blinkfrequenz und zeigen ein nahezu konstantes Leuchten, während sie fraßen. Nicht leuchtende Kontrolltiere derselben Art hatten fast keinen Jagderfolg.

Sie zeigten auch keine Änderung in der Blinkfrequenz bei Anwesenheit von Zooplankton. Die Blinkfrequenz bei nicht leuchtenden Fischen lässt sich über die Beobachtung der Rotation der Leuchtorgane bestimmen.

„Diese Ergebnisse zeigen deutlich, dass Anomalops katoptron zur Nahrungssuche auf seine Leuchtorgane angewiesen ist“, folgern Stefan Herlitze und Jens Hellinger.

Weiterhin konnten die Forscher zeigen, dass die Blinkfrequenz der Tiere auch vom Umgebungslicht gesteuert wird. Tagsüber ruhen die Tiere im Riffaquarium bei Dämmerlicht in einer Höhle und halten ihre Leuchtorgane, unterbrochen von kurzen Blinkereignissen, weitgehend geschlossen.

Nachts während der Aktivitätsphase zeigen die Tiere dagegen eine hohe Blinkfrequenz. Die genaue Funktion dieser Blinkmuster ist jedoch noch unklar. Ob die Fische über ihre Blinkmuster kommunizieren oder durch das Blinken im Schwarm Raubfische verwirren, sollen weiterführende Untersuchungen klären.

Eine enge Symbiose

Anatomische Untersuchungen, die die Forscher an Dünnschnitten der Leuchtorgane lumineszenter und nicht lumineszenter Fische durchführten, zeigen deutliche Unterschiede in der makroskopischen und mikroskopischen Struktur: Während die Leuchtorgane lumineszenter Fische dicht gepackte und geordnete Tubuli enthalten, in denen die leuchtenden Bakterien leben, bilden sich nach dem Erlöschen der Leuchtorgane und dem Verlust der Bakterien Löcher in der Tubulusstruktur.

Diese strukturelle Änderung nach dem Verlust der Lumineszenz weist auf die enge Symbiose zwischen dem Fisch und den Bakterien hin. Der Verlust der Lumineszenz kommt durch einen Nahrungsmangel zustande.

Hintergrund Biolumineszenz

Die Produktion von Licht durch Organismen ist in der Natur weit verbreitet. Die weitaus meisten Vertreter lumineszenter Organismen kommen in marinen Lebensräumen vor und lassen sich in vielen systematischen Gruppen finden.

Unter den Tieren der Tiefsee sind rund 90 Prozent biolumineszent. Unter den Wirbeltieren zeigen nur die Fische Biolumineszenz.

Fische besitzen entweder Leuchtorgane, in denen sie selbst Licht produzieren, oder sie beherbergen symbiontische Bakterien, die das Licht aussenden.

Das Licht kann zur Kommunikation, zum Anlocken von Beuteorganismen oder zur Verteidigung genutzt werden – die genaue Funktion ist in vielen Fällen unklar und bei Tiefseeorganismen schwierig zu untersuchen.

„Durch die enormen Druckunterschiede lassen sich die Fische kaum unbeschadet an die Oberfläche bringen“, so Stefan Herlitze und Jens Hellinger. Der Blitzlichtfisch Anomalops katoptron ist eine Ausnahme. Er lebt in verhältnismäßig flachen Gewässern und lässt sich daher im Aquarium halten.

Publikation

Jens Hellinger, Peter Jägers, Marcel Donner, Franziska Sutt, Melanie D. Mark, Budiono Senen, Ralph Tollrian und Stefan Herlitze: The Flashlight Fish Anomalops katoptron Uses Bioluminescent Light to Detect Prey in the Dark, in: Plos One, 2017, DOI: 10.1371/journal.pone.0170489, http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0170489



Artikel kommentieren

Weitere Meldungen

Bilder einzelner Scans von Fischgehirnen (blau = Region, die für Verarbeitung visueller Reize zuständig ist). A. Muräne. B. Fasanbutt.; Bildquelle: Iglesias et al. 2018

Nachtaktive Fische haben kleinere Gehirne

Ein internationales Forscherteam hat herausgefunden, dass nachtaktive Fische trotz ihrer größeren Augen kleinere Gehirnareale zur Verarbeitung visueller Reize haben als tagaktive Fische
Weiterlesen

Steinfisch, Eisfisch und Flunder ; Bildquelle: Julie Johnson/University of Michigan

Kalte Ozeane bringen doppelt so schnell neue Fisch-Arten hervor wie tropische Meere

Wissenschaftlerinnen und Wissenschaftler von insgesamt acht Institutionen haben für die Studie die Beziehung zwischen Breitengrad, Artenreichtum und der Rate neuer Artenbildung bei Meeresfischen untersucht
Weiterlesen

Höhlenfisch aus den unterirdischen Karstsystemen der Donau-Aach-Region in Süddeutschland; Bildquelle: Universität Konstanz

Entschlüsselung des Genoms europäischer Höhlenfische

Plant and Animal SMRT Grant 2018 für Forschungsprojekt unter Beteiligung von Konstanzer Fischökologin Dr. Jasminca Behrmann-Godel
Weiterlesen

Dreistachliger Stichling; Bildquelle: WWU/Jörn Scharsack

Mit Parasiten infizierte Stichlinge beeinflussen Verhalten gesunder Artgenossen

Bestimmte Bandwürmer bringen Stichlinge dazu, sich „leichtsinnig“ zu verhalten und so eine leichtere Beute für Vögel zu werden.
Weiterlesen

Nilhechte erzeugen ihr elektrisches Feld mit einem speziellen Organ kurz vor ihrer Schwanzflosse. An ihrem Kopf, Rücken und Bauch sitzen zahlreiche Elektrorezeptoren.; Bildquelle: Sarah Pannhausen/Uni Bonn

Roboterfisch bringt „echte“ Nilhechte zum Reden

Die nachtaktiven afrikanischen Nilhechte erzeugen elektrische Spannungspulse und verschaffen sich damit ein erstaunlich genaues Bild ihrer Umgebung
Weiterlesen

Männchen ejakuliert in das Schneckenhaus, in dem ein Weibchen Eier legt.; Bildquelle: Michael Taborsky, Universität Bern

Wie Fische ihre Spermien auf Erfolg trimmen

Buntbarsch-Männchen haben verschiedene Taktiken entwickelt, um sich bei der Befruchtung von Weibchen durchzusetzen. Sogar ihre Spermien sind der jeweiligen Taktik angepasst
Weiterlesen

Max-Planck-Gesellschaft

Das Herz der Landwirbeltiere hat sich aus dem Herz urtümlicher Fische entwickelt

Wissenschaftler vom Max-Planck-Institut für Herz- und Lungenforschung in Bad Nauheim haben herausgefunden, dass sich das Herz der Landwirbeltiere aus dem Herz urtümlicher Fische entwickelt hat
Weiterlesen

Friedrich-Alexander-Universität Erlangen-Nürnberg

Meerestiere folgen seit Jahrmillionen ihrem bevorzugten Klima

Die gegenwärtige globale Erwärmung hat weitreichende ökologische Auswirkungen, auch auf die Weltmeere. Die Wanderung vieler Meeresorganismen in Richtung der Pole ist eine klare Antwort darauf
Weiterlesen


Wissenschaft


Universitäten


Neuerscheinungen