Neues über Spinnenseide

(16.11.2013) Spinnenfäden sind leicht, extrem reißfest und stark dehnbar. Das macht sie für industrielle Anwendungen interessant. Forscher vom Biozentrum der Uni Würzburg beschreiben in "Nature Communications" neue Details über die Proteine, aus denen Spinnenfäden bestehen.

Spinnennetze sind aus einem faszinierenden Material gemacht. Die achtbeinigen Krabbeltiere erzeugen es in ihren Spinndrüsen im Hinterleib aus speziellen Proteinen, die sie zu langen Fäden verspinnen.

Das geht extrem schnell: Beim Abseilen zum Beispiel ziehen sie die Seidenfäden mit einer Geschwindigkeit von bis zu einem Meter pro Sekunde aus ihrem Körper heraus.


Eine Gartenkreuzspinne zieht mit den Beinen Spinnenfäden aus den Spinnwarzen an ihrem Hinterleib heraus. Spinnenfäden haben so spannende Eigenschaften, dass man sie gerne technisch nachbauen würde

Beeindruckend ist nicht nur die Geschwindigkeit, mit der Spinnen spinnen – auch das Material selbst ist erstaunlich: „Der Abseilfaden und der Rahmenfaden eines Spinnennetzes sind, bezogen auf ihr geringes Gewicht, widerstandsfähiger als Stahl oder die High-Tech-Faser Kevlar“, erklärt Hannes Neuweiler vom Biozentrum der Universität Würzburg.

Spinnenseide: viele Anwendungen möglich

Kein Wunder also, dass in Forschungslabors und Firmen versucht wird, die Produktion von Spinnenfäden technisch nachzuahmen. Denkbare Anwendungen gibt es genug: neuartige Fasern für Textilien zum Beispiel oder innovative Materialien für den Fahrzeugbau und die Medizintechnik.

Zu den Vorteilen der Spinnenseide gehört auch, dass sie für den menschlichen Organismus sehr gut verträglich und komplett biologisch abbaubar ist.

„Rein technisch klappt die Herstellung von Spinnenseide schon relativ gut. Aber die herausragenden mechanischen Eigenschaften von echten Spinnenfäden werden auf diesem Weg bislang nicht erreicht“, sagt der Biotechnologe Neuweiler.

Er kennt auch einen Grund dafür: Die molekularen Vorgänge beim natürlichen Spinnprozess sind immer noch nicht gut genug verstanden, um sie perfekt nachahmen zu können.

Dynamik des Spinnprozesses gezeigt

Am Spinnprozess fasziniert den Würzburger Forscher vor allem die Geschwindigkeit, mit der sich in der Spinne einzelne Protein-Moleküle zu langen Fäden anordnen.

Diesen Aspekt hat er genauer unter die Lupe genommen – schließlich ist sein Forschungsteam darauf spezialisiert, die Dynamik von Proteinen sichtbar zu machen. Dafür kommen unter anderem spezielle optische Techniken zum Einsatz.

Neuweiler und seine Mitarbeiter haben nun einen bestimmten Abschnitt eines Seidenproteins der Raubspinne (Euprosthenops australis) analysiert. „Dieser Abschnitt ist sehr interessant, weil er die endständigen Bereiche der Proteine, die sich zu Seidenfäden verbinden, miteinander verknüpft“, so Neuweiler.

Salz stört Geschwindigkeit der Protein-Verknüpfung nicht

Das Ergebnis ist im Fachblatt „Nature Communications“ veröffentlicht: Der beobachtete Abschnitt verbindet die Proteine 1000 Mal schneller miteinander als es bei gewöhnlichen Protein-Protein-Wechselwirkungen der Fall ist.

Dazu kommt eine weitere Auffälligkeit: Der Prozess wird durch Salze nicht verlangsamt, was bei solch schnellen Proteinwechselwirkungen sonst immer geschieht.

Die Würzburger Forscher erklären das mit einer elektrischen Besonderheit des untersuchten Proteinabschnitts, nämlich mit ungewöhnlichen Dipol-Wechselwirkungen.

„Bei der Seidenproduktion der Webspinnen scheint die Evolution einen Weg gefunden zu haben, eine stark beschleunigte Assoziation von Proteinen auch in Gegenwart physiologischer Salzkonzentrationen zu ermöglichen“, meint Neuweiler.

Denn am Ende des Spinnkanals der Spinndrüse, wo die Seidenproteinfäden entstehen, sind Salze in unterschiedlicher Zusammensetzung vorhanden, die für den Spinnprozess eine Rolle spielen. Ihre genaue Funktion dort ist bislang wenig verstanden.

Das Phänomen weiter erforschen

Die Würzburger Biotechnologen gehen der „Salzresistenz“ jetzt weiter auf den Grund. Als nächstes wollen sie prüfen, ob das Phänomen auch bei anderen Spinnenseidenproteinen und in anderen Arten von Spinndrüsen auftritt.

Denn Spinnen haben in ihrem Hinterleib bis zu sieben solcher Drüsen, mit denen sie jeweils unterschiedliche Sorten von Fäden erzeugen.

"The N-terminal domains of spider silk proteins assemble ultrafast and protected from charge screening”, Nature Communications, 15. November 2013, DOI 10.1038/ncomms3815



Artikel kommentieren

Weitere Meldungen

Georg-August-Universität Göttingen

Göttinger Biologen entdecken Genomverdopplung in Spinnen und Skorpionen

Um die Vielfalt in der Natur und deren evolutive Mechanismen zu verstehen, setzen Evolutionsbiologen auf die vergleichende Analyse von Genomen
Weiterlesen

Springspinne Phidippus mystaceus saugt eine Mücke aus; Bildquelle: David E. Hill, Peckham Society, Simpsonville, South Carolina

Spinnen fressen jedes Jahr 400 bis 800 Millionen Tonnen Beutetiere

Spinnen werden seit langer Zeit verdächtigt, zu den wichtigsten Fressfeinden der Insekten zu gehören
Weiterlesen

Professor Wolfgang Nentwig von der Universität Bern; Bildquelle: Lisa Schäublin/ NMBE

Berner Initiative will die gesamte Artenvielfalt der Spinnen bis in 30 Jahren erforschen

Kürzlich haben sich 34 Forschungspartner zu einer Initiative vereint, die zum Ziel hat, bis in 30 Jahren 95 Prozent aller Spinnenarten der Welt zu erfassen
Weiterlesen

Zart und zäh zugleich: Spinnenseide. Raffinierte Hierarchie und Ordnung auf verschiedensten Längenskalen; Bildquelle: Markus Anton und Periklis Papadopoulos/Universität Leipzig und Max-Planck-Institut für Polymerforschung Mainz

Zart und dennoch robust: Neue Erkenntnisse über Spinnenseide gewonnen

Physiker der Universität Leipzig haben gemeinsam mit ausländischen Partnern bei Experimenten mit Laserstrahlen völlig neue Erkenntnisse über die Beschaffenheit von Spinnenseide gewonnen
Weiterlesen

Ernst-Moritz-Arndt-Universität Greifswald

Wie Spinnenmänner dem Kannibalismus nach der Paarung entkommen können

Spinnenmännchen die vorsichtig bei der Paarung sind, haben größere Chancen, während des Geschlechtsakts vom Weibchen nicht gefressen zu werden
Weiterlesen

Radnetzspinne Larinia jeskovi; Bildquelle: Gabriele Uhl

Spinnenmännchen sichern sich Vaterschaft durch Verstümmelung ihrer Partnerinnen

Eine neue Studie von Forscherinnen und Forschern der Universität Greifswald und Bia³ystok (Polen) zeigt, dass Spinnen ihre Vaterschaft sichern, indem die Männchen die äußeren Genitalstrukturen der Weibchen zerstören
Weiterlesen

Foto einer Spinnenlarve mit verdoppelten Pedipalpen – ein Gliedmaßen-Paar, das vorne am Kopf sitzt; Bildquelle: Universität Göttingen

Ein Gen für Spinnen-Taster

Göttinger Entwicklungsbiologen finden Gen für die Kontrolle der Tasterentwicklung bei Spinnen
Weiterlesen

Die Spinne bleibt wohl dank spezieller Borstenbüschel an der Sandoberfläche; Bildquelle: Senckenberg/Kunz

Neue Spinnengattung: vier neue Riesenkrabbenspinnen-Arten

Spinnenforscher Dr. Peter Jäger vom Senckenberg Forschungsinstitut in Frankfurt hat eine neue Gattung aus der Familie der Riesenkrabbenspinnen entdeckt
Weiterlesen


Wissenschaft


Universitäten


Neuerscheinungen





[X]
Hinweis zur Nutzung von Cookies

Diese Website nutzt Cookies zur Bereitstellung von personalisierten Inhalten, Anzeigen, Inhalten von sozialen Medien und zur Analyse des Benutzerverhaltens. Die mit Hilfe von Cookies gewonnenen Daten werden von uns selbst sowie von uns beauftragten Partnern in den Bereichen soziale Medien, Online-Werbung und Website-Analyse genutzt. Durch den Besuch unserer Website erklären Sie sich damit einverstanden, dass wir Cookies setzen.

Mit der weiteren Nutzung dieser Website erklären Sie sich mit der Verwendung von Cookies einverstanden. Mehr erfahren...